Emission Testing at Two South African Power Stations using the US-EPA’s Mercury Toolkit

Dr Gregory Scott
Special Advisor: Industrial Process Engineering

4th EU / South Africa Clean Coal Working Group Meeting
6 November 2012, Emperor’s Palace, Kempton Park
Overview

• Background
• Methodology
• Results
• Discussion
• Way Forward
• Acknowledgements
Background

- Project was undertaken as part of a UNEP project “Reducing mercury emissions from coal combustion in the energy sector – Part 1”
- Emission testing was undertaken by a team from the US-EPA using the EPA Mercury Toolkit
- Two power stations in the Witbank area were sampled
- Simultaneous coal and ash (fly ash and bottom ash) samples were taken
- All previous estimates of mercury emissions from South African power stations were based on emission factor calculations
South Africa’s coal fired power generation fleet
Methodology

• Mercury Emission Measurements
 – Paired carbon traps are co-located in the stack and are sampled individually (US-EPA Method 30B)
 – 30 minute sampling runs
 – Traps are analysed individually
 – Each emission test is required to have 3 sets of valid paired trap measurements
 – All testing is undertaken according to an agreed quality assurance project plan (QAPP)
 – Speciating trap samples were taken from all stacks
 – Results give the oxidised / elemental Hg split
Methodology

- **Solid Sampling**
 - Raw coal samples
 - Fly-ash samples
 - Bottom-ash samples
 - The solid sampling should be viewed as a separate exercise from the emission testing
 - The results can assist in the interpretation of the emission testing results
Methodology

• Limitations of the study
 – Only one sampling port used for the sampling (representivity ?)
 – Time constraints (12 stacks in 5 days on 2 sites)
 – Some unexpected results from the control efficiency calculations (negative performance ??)
Results

• Duvha Power Station
 – 3 600 MW (6 x 600MW units)
 – Coal Consumption – 11.7 million tons / annum
 – Average Hg content – 0.23 ppm historical
 – Average Hg content – 0.15 ppm measured (0.11 – 0.21 ppm)
 – Annual Hg emission – 1883.7 kg/annum (calculated)
 – Annual Hg emission – 1748.5 kg/annum (measured)
 – 3 units – Electrostatic Precipitator with SO$_3$ injection
 – 3 units – Fabric Filter Plants
Results

Duvha Power Station

<table>
<thead>
<tr>
<th>Unit Number</th>
<th>Hg Concentration (µg/m3 3% O$_2$)</th>
<th>Hg 2+ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.81</td>
<td>89%</td>
</tr>
<tr>
<td>2</td>
<td>4.65</td>
<td>73%</td>
</tr>
<tr>
<td>3</td>
<td>4.09</td>
<td>88%</td>
</tr>
<tr>
<td>4</td>
<td>35.49</td>
<td>56%</td>
</tr>
<tr>
<td>5</td>
<td>29.01</td>
<td>54%</td>
</tr>
<tr>
<td>6</td>
<td>40.37</td>
<td>55%</td>
</tr>
</tbody>
</table>
Results

- Kendal Power Station
 - 4 116MW (6 x 686 MW units)
 - Coal Consumption – 13.9 million tons / annum
 - Average Hg content – 0.44 ppm historical
 - Average Hg content – 0.23 ppm measured
 (0.17 – 0.34 ppm)
 - Annual Hg emission – 5504.4 kg/annum (calculated)
 - Annual Hg emission – 3030.6 kg/annum (measured)
 - 6 units – Electrostatic Precipitators with SO$_3$ injection
Results

Kendal Power Station

<table>
<thead>
<tr>
<th>Unit Number</th>
<th>Hg Concentration (µg/m³ 3% O₂)</th>
<th>Hg 2+ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>39.20</td>
<td>70%</td>
</tr>
<tr>
<td>2</td>
<td>43.45</td>
<td>54%</td>
</tr>
<tr>
<td>3</td>
<td>49.13</td>
<td>52%</td>
</tr>
<tr>
<td>4</td>
<td>46.03</td>
<td>52%</td>
</tr>
<tr>
<td>5</td>
<td>39.47</td>
<td>48%</td>
</tr>
<tr>
<td>6</td>
<td>46.34</td>
<td>54%</td>
</tr>
</tbody>
</table>
Discussion

• Clear distinction between the performance of ESP vs FF in the Duvha results
• Higher fraction of oxidised mercury in the fabric filter stacks
• The calculated mercury emissions based on historical Hg coal concentrations may be an overestimate (specifically in the case of Kendal)
• This may indicate that the emission factor (0.1) for ESP’s in the UNEP toolkit may not be appropriate for application in South Africa
• Extrapolation of results – caution !!!
Way Forward

- Continuation of the UNEP project “Reducing mercury emissions from coal combustion in the energy sector – Part 2 – Demonstration Project”
- Detailed understanding of the coal mercury chemistry to allow Eskom to understand the levels of mercury that may be captured using the existing gas control technologies and future co-benefits
- Coal analysis – objective is undertake extensive coal sampling and mercury analysis to improve the accuracy of emission factor calculations
- Emissions testing programme – verification and validation of calculations
Acknowledgements

• UNEP Global Mercury Partnership (project funded by the EU)
• IEA CCC
• US-EPA / Arcadis
• Eskom
Thank you for your attention

Contact Details

Dr Gregory Scott
gscott@environment.gov.za
+27 12 – 310 3084
+27 83 – 781 0900