Modern Steam Plant

Hugh Kennedy
06/11/2012
<table>
<thead>
<tr>
<th>Agenda</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Boiler Features</td>
<td>2</td>
</tr>
<tr>
<td>Steam Turbine Features</td>
<td>16</td>
</tr>
<tr>
<td>Challenges and Trends</td>
<td>20</td>
</tr>
<tr>
<td>Potential Solutions for South Africa</td>
<td>30</td>
</tr>
<tr>
<td>Conclusions</td>
<td>35</td>
</tr>
</tbody>
</table>
Boiler Product Types
Current Portfolio

Tower
- Minimum footprint
- Drainable heating surface
- Lower ash carry over
- Minimized erosion potential
- Ease of maintenance

Two Pass
- Minimum height
- Pendant surface
 - Simple support/sealing
 - Fewer uncooled attachments
- Optimised backpass heating surfaces
- Spiral or vertical furnace wall

CFB
- Broad fuel flexibility
- Simple fuel preparation
- Inherent emission control
 - Low NO\(_x\) / SO\(_2\) from furnace
 - Simple equipment for additional reduction

Proven solutions for all fuels
Alstom fuel expertise

Specialist experience

- Fiddlers’ Ferry*
- Drax*
- Patnow II
- Maritza East
- Belchatow II
- Neurath F/G

World Class Products

- Waigaoqiao II and III
- RDK 8
- Westfalen D/E
- Comanche 3
- Pee Dee

- Shoaiba
- Chalk Point 3
- Ravenswood 3
- Pittsburgh 7
- LaSpezia 4

Specialist experience

- Tamuin
- Mailiao
- Tonghae, Luohuang

- *Biomass Co-firing

Expertise & world class products for a broad fuel spectrum

- Biomass
- Lignite
- Bituminous
- Sub-bituminous
- Oil*
- Anthracite
- Petcoke

- Pulverized Coal
- Circulating Fluidized Bed

*Oil-fired boiler
Boiler Key Features
Tower & Two Pass

Tangential firing system
- Excellent fuel/air mixing for tolerance to fuel variation
- Low slagging tendency:
 - Reduced cleaning
 - Maximised efficiency

Tilting burners
- Reheat steam temperature control without spray attemperation
- High efficiency over full load range

Spiral or Vertical walls
- Optimum solution for every fuel

Thermal & operational flexibility with improved performance
SPSC Boiler Arrangement

Two types of arrangements are offered for once-through technology

Two Pass, Pendant Arrangement

88m (288 ft)

Tower Boiler Arrangement

+ 114.5m (376 ft.)
Technology Selection Criteria

<table>
<thead>
<tr>
<th>Tower</th>
<th>2-Pass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cost</td>
</tr>
<tr>
<td></td>
<td>Performance</td>
</tr>
<tr>
<td></td>
<td>Operability</td>
</tr>
<tr>
<td></td>
<td>Footprint</td>
</tr>
<tr>
<td></td>
<td>Height</td>
</tr>
<tr>
<td></td>
<td>Drainability</td>
</tr>
<tr>
<td></td>
<td>Economizer Upflow*</td>
</tr>
<tr>
<td></td>
<td>Erosion Potential</td>
</tr>
<tr>
<td></td>
<td>Pressure Part Attachments</td>
</tr>
<tr>
<td></td>
<td>Maintainability</td>
</tr>
</tbody>
</table>

Generally only applicable to lignite firing
Furnace Wall Designs

Spiral Wall Configuration

Vertical Wall Configuration
Spiral tube furnace walls

Spiral to Vertical Transition Area - Load Transfer

Support Fingers

SPIRAL WALL SUPPORT
Vertical tube furnace walls

- LSW
- FW
- RSW
- RW

Burner zone

Distribution orifices

Ring header

Heat flux

115
100
75

1 1/4" (31.8 mm) O.D. Tubing

1 1/8" (28.5 mm) O.D. Tubing

POWER SYSTEMS | ALSTOM
Vertical tube furnace walls

- Heat flux varies across furnace walls
- Orifices match fluid flow to heat flux
- Proper tube metal temperatures maintained

Orifices ensure adequate cooling by matching flow to heat flux
Circulating Fluidized Bed Boilers

Dual Grate
- 350 MWe subcritical
- Scalable up to 600MWe ultra-supercritical

Single Grate
- Single cyclone
 - 100 MWe
 - Non-reheat
- Dual-cyclone
 - 135 – 150 MWe
 - Reheat
- Tri-cyclone
 - Up to 350 MWe
 - Reheat

Leading CFB technology for outstanding fuel flexibility
CFB Boilers
Narva, Estonia

2 x 300 MW CFB Turnkey Plant

Customer
• Narva Elektrijaamad AS (subsidiary of Eesti Energia)

Product
• 2 x 300 MW CFB for local oil shale & biomass

Scope
• Full turnkey steam power plant

Benefits
• Burning local oil shale containing 46% ash and 12% moisture
• Co-firing of retort gas up to 10%
• Biomass co-firing up to 50%

Fuel Flexibility and Low Emissions
CFB Boilers
Emile Huchet, France

1 x 125 MW CFB Turnkey Plant

Customer:
• SODELIF, France

Fuel:
• Coal washing waste
• Ultra fine product: d50% =150 microns, d99% < 2 mm
• Slurry:
 30% ash content,
 33% moisture,
 LHV, Kcal/Kg 2500
• Schlamms:
 8% moisture,
 LHV 5000 Kcal/kg

Steam Conditions:
• 367 t/h; 155 bar/545°C/540°C

Emission levels (mg/Nm³ @ 6%O₂ DG):
• SO₂: 330
• NOₓ: 300
CFB boilers
Seward, USA

- **Emission levels**
 - **SO₂**
 - mg/Nm³ @ 6 % O₂: 780
 - or sulphur removal: 95%
 - **NOₓ**
 - mg/Nm³ @ 6 % O₂: 130
 - **Particulates**
 - mg/Nm³ @ 6 % O₂: 40

- **Energy levels**
 - **Heating Value**
 - MJ/kg: 12.8 (11.6-14)
 - Kcal/kg: 3050

2 x 260 MW CFB Turnkey Plant

Customer:
- Reliant Resources, USA

Commissioned:
- 2004

Steam Conditions:
- 2 x 872 t/h
- 174 bar/541°C/541°C

Fuel
- 2 million tonnes waste coal on site
- 100 million more within 80 km

<table>
<thead>
<tr>
<th></th>
<th>% wt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>29.32 (25-35)</td>
<td></td>
</tr>
<tr>
<td>Volatile matter</td>
<td>11 (9-30)</td>
<td></td>
</tr>
<tr>
<td>Sulphur</td>
<td>2.75 (2 – 4.25)</td>
<td></td>
</tr>
<tr>
<td>Ash</td>
<td>51 (25-58)</td>
<td></td>
</tr>
<tr>
<td>Moisture</td>
<td>8.7 (7 – 12)</td>
<td></td>
</tr>
<tr>
<td>Heating Value</td>
<td>12.8 (11.6-14)</td>
<td></td>
</tr>
<tr>
<td>Kcal/kg</td>
<td>3050</td>
<td></td>
</tr>
</tbody>
</table>

Emission levels
- **SO₂**
 - mg/Nm³ @ 6 % O₂: 780
 - or sulphur removal: 95%
- **NOₓ**
 - mg/Nm³ @ 6 % O₂: 130
- **Particulates**
 - mg/Nm³ @ 6 % O₂: 40

Clean and efficient disposal of coal residue

Modern Steam Plant - H Kennedy - 05/11/2012 - P 15

© ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.
Welded Rotor Design
Superior design – in use since 1930

- Optimal material selection
- Lower stress levels enable faster start-up and load cycling
- Small forgings easier and faster to obtain on the market

Best fit to (ultra-)supercritical conditions
Shrink ring design

- Thin-walled rotationally symmetric inner casing with unique shrink ring design
- Double shell design with thin-walled outer casing and small flange
- Eliminates casing distortions, maintains clearances & efficiency
- Enables faster start-ups and load cycling
- Ensures long-term reliability and operational flexibility
- Proven since 1960

Best thermal flexibility and sustained efficiency
Alstom Steam Turbines
Lateral Exhaust for ACC

Savings in civil engineering and exhaust ducts to the ACC

Crane height: 14.5 m
Shaft center line: 8 m
Floor level: 7 m
Exhaust center line: 6 m
Agenda

Steam Boiler Features | Page 2
Steam Turbine Features | Page 16
Challenges and Trends | Page 20
Potential Solutions for South Africa | Page 30
Conclusions | Page 35
Challenges for Today's Steam Plants

- Emissions
- Efficiency
- Flexibility
- Water Impact
The need for high efficiency

Efficiency increase key to reduced fuel burn and emissions
Overview of Steam Cycle Developments

<table>
<thead>
<tr>
<th>Year</th>
<th>Subcritical</th>
<th>Supercritical</th>
<th>Ultrasupercritical (USC)</th>
<th>Advanced USC (AUSC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1980</td>
<td>270/580/600</td>
<td>280/600/620</td>
<td>Medupi Kusile</td>
<td>R&D Europe: AD700 project COMTES 700 NRW PP 700 (Ni-base)</td>
</tr>
<tr>
<td>2020</td>
<td>350/730/760</td>
<td>350/730/760</td>
<td>Advanced USC (AUSC)</td>
<td></td>
</tr>
</tbody>
</table>

* Based on LHV and open cycle cooling at 13°C

Net efficiency: 50%

Steam Conditions (bar/LS°C/RHS°C): Subcritical, Supercritical, Ultrasupercritical (USC), Advanced USC (AUSC)
Ultra-Supercritical plant
RDK8, Germany 912 MW

Customer
• EnBW Kraftwerke AG

Product
• 1 x 912 MW coal-fired Ultra-supercritical power plant
• 275bar/600°C/620°C

Scope
• Turnkey Power Block, including Plant Engineering, Procurement, Erection and Commissioning

Benefits
• Overall net plant efficiency of >46% (>58% with district heating)
• Considerable reduction in emissions:
 • CO₂ < 740 g/kWh
 • CO & NOₓ < 100 mg/Nm³

One of the most efficient steam power plants in the world
Water Consumption

- Dry cooling saves ~30 000 m³/day/unit
- Regulations require desulphurisation
- FGD consumption (Kusile ~ 6 600 m³/day/unit)
- Two mitigation solutions

- Semi-dry FGD
 - 45% less water

- Circulating Fluidised Bed (CFB) combustion
 - No water for desulphurisation
 - No coal washing
Economies of Scale drive selection of larger unit sizes

- EPRI estimates a 0.7 economy of scale (EOS) factor for coal units
- The curve is not linear, but will have step changes – based on unique size ranges of major equipment

Example: For an EOS factor of 0.7, compared with a 800MW unit, a 1000MW unit would cost approximately:

Larger units bring capital and operating cost benefits
Unit Size
e.g. Manjung 4, Malaysia

1080 MW USC Plant

Customer
- Tenaga Nasional Bhd (TNB)

Product
- 1x 1080 MWe Supercritical coal-fired power plant

Scope
- Turnkey EPC contract with China Machinery Import & Export Corporation consortium partner

Benefits
- Additional capacity to meet strong demand in fast-growing economy
- Reduced coal consumption and CO₂ emissions
- Large size reduces specific capital and operating costs

South East Asia’s largest and most efficient unit
Unit Size

e.g. Neurath F&G, Germany

2x 1100 MW USC Lignite Plant

Customer
- RWE Power AG

Product
- 2 x 1100 MW lignite-fired Ultra-Supercritical power plant (260bar/595°C/604°C)

Scope
- Plant Engineering
- Turnkey steam turbine islands
 - 49” last stage blades
- Lignite boilers in consortium
 - 170m high

Benefits
- Large size reduces specific capital and operating costs
- A proven technology for clean, efficient lignite-based power production
- Advanced technology resulting in high efficiency and reduced CO₂ emissions

World’s largest lignite-fired power plant
Dynamic response

- Load jump capability 0.5 Hz frequency dip
 - Primary Frequency Response:
 - + 10% of MCR in 10s sustained for 20s
 - Secondary Frequency response
 - + 10% of MCR in 30s sustained for 30 min

- Load jump capability restored 20 min after initial load jump

- Load profile for 0.5 Hz frequency drop
 - 10% load jump: 65% to 80% load
 - Reducing to 2.5% at 95% load

- No efficiency penalty

Patented solutions to support renewable integration
Agenda

Steam Boiler Features Page 2

Steam Turbine Features Page 16

Challenges and Trends Page 20

Potential Solutions for South Africa Page 30

Conclusions Page 35
Power Block Optimisation

• Target: Maximum Net Present Value (NPV), balanced between:
 - Performance
 - Investment
 - Availability & Reliability
 - Construction, Operation & Maintenance
 - References
 - Flexibility
 - Land and water use

• Key areas to be studied:
 - Steam Parameters,
 - Unit size (MW),
 - Components & Systems selection,
 - Plant/turbine hall layout.
USC with ACC
Improvements on Medupi/Kusile

Medupi 241bar abs, 560/570°C → 275bar abs, 600/620°C

Superheater

Reheater

Pressure drop optimisation

HARP

No Throttling

Retain 2 x LPs

Feedwater 268°C -> 305°C

Top de superheater

2 → 3 HP heaters

Boiler Feed Water Pump

Hydraulic → VFD

Separator

Membrane wall

Economiser HP8 HF7 HP6

2 → 3 HP heaters

Feed Water Tank

3 → 4 LP heaters

USC adapted expansion line

Condensate Polishing Plant

Condensate Extraction Pump

Air Flow

Air Cooled Condenser

LP Bypass

Modern Steam Plant - H Kennedy - 05/11/2012

© ALSTOM 2012. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.
Potential cycle improvements

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Medupi</th>
<th>USC Based on RDK8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gross Unit Output (TMCR)</td>
<td>794 MW</td>
<td>900 MW</td>
</tr>
<tr>
<td>Net Unit Output</td>
<td>723 MW</td>
<td>819 MW</td>
</tr>
<tr>
<td>Main Steam Pressure (Turbine Inlet)</td>
<td>241 bar abs</td>
<td>275 bar abs</td>
</tr>
<tr>
<td>Main Steam Temperature (Turbine Inlet)</td>
<td>560°C</td>
<td>600°C</td>
</tr>
<tr>
<td>Re-heat Steam Pressure (Turbine Inlet)</td>
<td>50.5 Bar abs</td>
<td>60.5 bar abs</td>
</tr>
<tr>
<td>Re-heat Steam Temperature (Turbine Inlet)</td>
<td>570°C</td>
<td>620°C</td>
</tr>
<tr>
<td>Final Feedwater temperature</td>
<td>268°C</td>
<td>305°C</td>
</tr>
<tr>
<td>Main Steam Flow at ST Inlet at TMCR</td>
<td>617 kg/s</td>
<td>693 kg/s</td>
</tr>
<tr>
<td>Condenser exhaust pressure</td>
<td>141 mbar</td>
<td>141 mbar</td>
</tr>
<tr>
<td>Estimated steam plant efficiency</td>
<td>40.13%</td>
<td>42.54%</td>
</tr>
</tbody>
</table>

+2.41%pts efficiency gain with optimised USC
USC Improvement Potential

- Applying the latest proven technology to South African conditions

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Medupi/Kusile</th>
<th>USC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated CO₂ emissions (tonnes/year)</td>
<td>29.1 million</td>
<td>27.5 million (-5.9%)</td>
</tr>
<tr>
<td>Estimated Coal Consumption (tonnes/year)</td>
<td>15.7 million</td>
<td>14.8 million (-5.9%)</td>
</tr>
</tbody>
</table>

- Units > 1 000 MW are feasible, based on similar and proven components

- Reduction in specific cost (R/kW):
 - 900 MW ~ -4.3%
 - 1000 MW ~ -7.7%

Significant gains from applying current technology
<table>
<thead>
<tr>
<th>Agenda</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Boiler Features</td>
<td>Page 2</td>
</tr>
<tr>
<td>Steam Turbine Features</td>
<td>Page 16</td>
</tr>
<tr>
<td>Challenges and Trends</td>
<td>Page 20</td>
</tr>
<tr>
<td>Potential Solutions for South Africa</td>
<td>Page 30</td>
</tr>
<tr>
<td>Conclusions</td>
<td>Page 35</td>
</tr>
</tbody>
</table>
Conclusions

• Steam plant remains the most important source of power generation globally (and in SA)

• Therefore, it must be:
 • Efficient
 • Economical
 • Flexible
 • Clean
 • Water friendly

• Alstom provides the full range of solutions to meet these demands