Electricity Generation Options considered by Eskom

Presentation at the Energy Planning Colloquium

Chris Gross

30 March 2012
Disclaimer

This presentation does not constitute or form part of and should not be construed as, an offer to sell, or the solicitation or invitation of any offer to buy or subscribe for or underwrite or otherwise acquire, securities of Eskom Holdings Limited (“Eskom”), any holding company or any of its subsidiaries in any jurisdiction or any other person, nor an inducement to enter into any investment activity. No part of this presentation, nor the fact of its distribution, should form the basis of, or be relied on in connection with, any contract or commitment or investment decision whatsoever. This presentation does not constitute a recommendation regarding any securities of Eskom or any other person.

Certain statements in this presentation regarding Eskom’s business operations may constitute “forward looking statements.” All statements other than statements of historical fact included in this presentation, including, without limitation, those regarding the financial position, business strategy, management plans and objectives for future operations of Eskom are forward looking statements.

Forward-looking statements are not intended to be a guarantee of future results, but instead constitute Eskom’s current expectations based on reasonable assumptions. Forecasted financial information is based on certain material assumptions. These assumptions include, but are not limited to continued normal levels of operating performance and electricity demand in the Distribution and Transmission divisions and operational performance in the Generation and Primary Energy divisions consistent with historical levels, and incremental capacity additions through our Group Capital division at investment levels and rates of return consistent with prior experience, as well as achievements of planned productivity improvements throughout our business activities.

Actual results could differ materially from those projected in our forward-looking statements due to risks, uncertainties and other factors. Eskom neither intends to nor assumes any obligation to update or revise any forward-looking statements, whether as a result of new information, future events or otherwise.

In preparation of this document we used certain publicly available data. While the sources we used are generally regarded as reliable we did not verify their content. Eskom does not accept any responsibility for using any such information.
Current Eskom generating capacity

<table>
<thead>
<tr>
<th>Type</th>
<th>Number of stations</th>
<th>Number of units</th>
<th>Net maximum capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal-fired</td>
<td>13</td>
<td>79</td>
<td>34 772 MW</td>
</tr>
<tr>
<td>Coal-fired (return to service)</td>
<td></td>
<td>8</td>
<td>949 MW</td>
</tr>
<tr>
<td>Hydroelectric</td>
<td>2</td>
<td>6</td>
<td>600 MW</td>
</tr>
<tr>
<td>Pumped storage</td>
<td>2</td>
<td>6</td>
<td>1 400 MW</td>
</tr>
<tr>
<td>Nuclear</td>
<td>1</td>
<td>2</td>
<td>1 800 MW</td>
</tr>
<tr>
<td>Wind</td>
<td>1</td>
<td>3</td>
<td>3.2 MW</td>
</tr>
<tr>
<td>Open Cycle Gas Turbine (OCGT) (Liquid fuel)</td>
<td>4</td>
<td>20</td>
<td>2 409 MW</td>
</tr>
<tr>
<td>Total</td>
<td>23</td>
<td>124</td>
<td>41 933.2 MW</td>
</tr>
</tbody>
</table>

The Net Maximum Capacity reflects the MW that the station can supply to the grid after taking out the capacity used for auxiliaries (plant)
Eskom’s + imports energy mix (2010)

- Coal: 88%
- Nuclear: 5%
- Imports: 6%
- Hydro: 1%
- Energy from Open Cycle Gas Turbines (OCGTs): <1%

Imports are a significant contribution
Comparison of annual CO₂ emissions by country in 2009

<table>
<thead>
<tr>
<th>Rank</th>
<th>Country</th>
<th>Annual CO₂ emissions (Mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>World</td>
<td>30,398</td>
</tr>
<tr>
<td>1</td>
<td>China</td>
<td>7,711</td>
</tr>
<tr>
<td>2</td>
<td>United States</td>
<td>5,425</td>
</tr>
<tr>
<td>3</td>
<td>EU</td>
<td>4,310</td>
</tr>
<tr>
<td>3</td>
<td>India</td>
<td>1,602</td>
</tr>
<tr>
<td>4</td>
<td>Russia</td>
<td>1,572</td>
</tr>
<tr>
<td>5</td>
<td>Japan</td>
<td>1,097</td>
</tr>
<tr>
<td>6</td>
<td>Germany</td>
<td>766</td>
</tr>
<tr>
<td>7</td>
<td>Canada</td>
<td>541</td>
</tr>
<tr>
<td>8</td>
<td>South Korea</td>
<td>528</td>
</tr>
<tr>
<td>12</td>
<td>South Africa</td>
<td>450</td>
</tr>
<tr>
<td>27</td>
<td>Egypt</td>
<td>192</td>
</tr>
<tr>
<td>36</td>
<td>Algeria</td>
<td>114</td>
</tr>
</tbody>
</table>

Highest CO₂ emitting power companies in the world

<table>
<thead>
<tr>
<th>Rank</th>
<th>Company</th>
<th>Annual CO₂ emissions (in Mt)</th>
<th>MWh Energy (in M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Huaneng Power International</td>
<td>285</td>
<td>260</td>
</tr>
<tr>
<td>2</td>
<td>Eskom</td>
<td>210</td>
<td>208</td>
</tr>
<tr>
<td>3</td>
<td>China Huadian Group</td>
<td>207</td>
<td>195</td>
</tr>
<tr>
<td>4</td>
<td>Southern Co</td>
<td>206</td>
<td>279</td>
</tr>
<tr>
<td>5</td>
<td>NTPC Ltd</td>
<td>186</td>
<td>182</td>
</tr>
</tbody>
</table>

If Eskom was a country, it would rank 26th globally with its emission, higher than any other African country.

Source: EIA International Energy Statistics
Eskom’s climate change strategy

- The climate change agenda is real and it is here
- Medium to long-term plans aligned to Government plans to mitigate and reduce relative emissions by 2025 and thereafter will see real reduction
- We must change our CO$_2$ footprint
- We will diversify our plant mix to reflect our climate change mitigation

- **Diversification** of the generation mix to lower carbon emitting technologies
- **Energy efficiency** measures to reduce demand and greenhouse gas and other emissions
- **Innovation** through research, demonstration and development
Technology Considerations

Natural Gas Technologies
- Limited local resources; lower efficient when dry-cooled/high altitude
- Short lead time; technically suited to low load factors; easier to site and therefore closer to load centres

Clean Coal Technologies
- Higher efficiency reduces CO$_2$ emissions
- Reduced efficiency (dry cooling/CO$_2$ capture); flue gas desulphurisation uses water
- Energy security; local resource;

Nuclear Technologies
- Require a higher assurance water supply; more suited to coastal sites; avoids the use of fresh water
- Perceptions around nuclear proliferation; longevity of radioactive waste material

Renewable Technologies
- Possible high price; intermittency; storage technology
- Low energy density; high volume of land use
Medupi is the first coal-generating plant in Africa to use supercritical power generation technology.

Capacity expansion programme

<table>
<thead>
<tr>
<th>Primary Energy</th>
<th>Generation</th>
<th>Transmission</th>
<th>Distribution & customer service</th>
<th>Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Return-to-service (RTS)</td>
<td>New coal</td>
<td>Peaking & renewables</td>
<td>Mpumalanga refurbishment</td>
<td>Transmission</td>
</tr>
<tr>
<td>Komati (1 000 MW)</td>
<td>Medupi (4 764 MW)</td>
<td>Ankerlig (1 338.3MW)</td>
<td>Arnot capacity increase (300 MW)</td>
<td>765kV projects</td>
</tr>
<tr>
<td>Camden (1 520 MW)</td>
<td>Kusile (4 800 MW)</td>
<td>Gourikwa (746 MW)</td>
<td>Matla refurbishment</td>
<td>Central projects</td>
</tr>
<tr>
<td>Grootvlei (1 180 MW)</td>
<td></td>
<td>Ingula (1 332 MW)</td>
<td>Kriel refurbishment</td>
<td>Northern projects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sere (100 MW)</td>
<td>Duvha refurbishment</td>
<td>Cape projects</td>
</tr>
</tbody>
</table>

- **3 700 MW**
- **9 564 MW**
- **3 516.3 MW**
- **300 MW**
- **~ 4 700 km**

Commissions of new stations

<table>
<thead>
<tr>
<th></th>
<th>First Unit</th>
<th>Last Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medupi</td>
<td>2013</td>
<td>2018</td>
</tr>
<tr>
<td>Kusile</td>
<td>2014</td>
<td>2018</td>
</tr>
<tr>
<td>Ingula</td>
<td>2014</td>
<td>2014</td>
</tr>
</tbody>
</table>

- ~ 17 080 MW of new capacity (5 381 MW installed and commissioned)
- ~ 4 700 km of required transmission network (3 531 km installed)
Renewable Energy
Developing renewable energy in South Africa is important

- Reduce CO₂-emissions
- Mitigate climate change
- Diversify energy sources

Government has taken several important steps to drive renewables deployment

- Large portion of IRP allocated to renewables
- Renewable Energy Purchase programme introduced

South Africa has good resources (especially for solar)

- Average solar radiation of about 2,300 kWh/m²/year
- Large areas in the Cape with average wind speeds of more than 6 m/s
Eskom’s current renewables activities

Sere Wind Farm

Description
- 100 MW Wind farm being constructed in Western Cape region
- 50 turbines of 2 MW each
- Commissioning in 2013

Summary
- Wind is recognised as the most proven renewables technology worldwide
- ~220,000t CO$_2$ saved per year based on 0.9t CO$_2$ /MWh

PV at Eskom sites

Description
- First installation of one hectare per site at two sites adding 2 MWp of capacity
- Installations on buildings. Three systems at MWP.

Summary
- PV is zero emissions technology
- PV does not require water during the power production cycle
- PV is a well-established, safe technology
- PV can be installed quickly at plant site

CSP demo plant

Description
- Studies under way of a 4km2 100 MWp concentrating solar thermal power station with molten salt energy storage near Upington

Summary
- Plant required to investigate CSP technology in South Africa
- Vital to Eskom’s carbon footprint reduction/ low carbon growth strategy
PV Arrays – Lethabo Power Station
Installations at MWP
Dual Axis Tracking PV Array – Megawatt Park
Parking Canopy Mounted PV Arrays
Megawatt Park
Eskom will build a 100 MWe Central Receiver demonstration plant with molten salt as a heat transfer fluid.

Further plant specifications:
• Capacity factor suited for base load operation (~9 hours storage)
• Two tank storage systems, with molten salt, designed to operate the power plant as a base-load plant and optimised based on Levelised Energy Costs
• The plant will be dry cooled, designed to optimise the water usage
• All auxiliary power will be sourced from the national grid and backup will be sourced from diesel generators
• Life of plant will be a minimum of 25 years
The system makes use of solar energy to create steam.

The advantages are that it will decrease CO$_2$ emissions and decrease the amount of fossil fuel being burnt.

Concerns are that the most intense solar energy generation is only sustained at a maximum output during peak summer hours and is only available during the day.
Solar Augmentation

Source: AREVA
Cleaner Coal
UCG Project Progress

- UCG technology scan - April 2001
- Ergo Exergy Technologies Inc. (Canada) contracted
- Scoping study highlighted potential at Majuba colliery - Nov 2002
- Pre-feasibility study confirmed Majuba potential - Dec 2003
- Site characterisation study confirmed the potential - July 2005
- Commissioned a 3-5000 Nm3/h pilot plant - 20 Jan 2007
- First electricity generated from UCG gas at Majuba - 31 May 2007
Co-firing:

- Commissioned new co-firing gas treatment plant – Jun 2010
- Commissioned new 7km x 600mm NB pipeline to Majuba power station – Jun 2010
- Gas co-fired into Majuba U4 - 28 Oct 2010

UCG-OCGT demo plant:

- Design study underway for a demonstration plant comprising 250,000 Nm3/h gas production and a 100 – 140 MW gas turbine plant
Carbon Sequestration using Algae

- Carbon capture technology are developing rapidly.
- The concern is that South Africa has limited on shore options for geological CO$_2$ storage.
- Storage options, on shore and offshore, are significant distance from current coal-fired power station sites.
- Algae is considered to provide a realistic and technically feasible solution for CCS.
- Positive laboratory results on local algae strains prompted larger scale outdoor assessment.

Source: Net Energy
Looking further ahead
Current considerations for the future…

- Higher efficiency renewable technology (PV, wind etc.)
- Improved energy storage options
- CO₂ storage clarity or alternatives
- Hydrogen economy
- Desalination
Thank You